Hydrological Signatures of Earthquake Strain
نویسنده
چکیده
The character of the hydrological changes that follow major earthquakes has been investigated and found to be dependent on the style of faulting. The most significant response is found to accompany major normal fault earthquakes. Increases in spring and river discharges peak a few days after the earthquake, and typically, excess flow is sustained for a period of 6-12 months. In contrast, hydrological changes accompanying pure reverse fault earthquakes are either undetected or indicate lowering of well levels and spring flows. Strike-slip and oblique-slip fault movements are associated with a mixture of responses but appear to release no more than 10% of the water volume of the same sized normal fault event. For two major normal fault earthquakes in the western United States (those of Hebgen Lake on August 17, 1959, and Borah Peak on October 28, 1983), there is suf•cient river flow information to allow the magnitude and extent of the postseismic discharge to be quantified. The discharge has been converted to a rainfall equivalent, which is found to exceed 100 mm close to the fault and to remain above 10 mm at distances greater than 50 km. The total volume of water released in these earthquakes was around 0.3 km 3 (Borah Peak) and 0.5 km 3 (Hebgen Lake). Qualitative information on other major normal fault earthquakes, in both the western United States and Italy, indicates that the size, duration, and range of their hydrological signatures have been similar. The magnitude and distribution of the water discharge for these events are compared with deformation models calibrated using seismic and geodetic information. The quantity of water released over a time period of 6-12 months suggests that crustal volume strain to a depth of at least 5 km is involved. The rise and decay times of the discharge are shown to be critically dependent on crack widths, and it is concluded that the dominant cracks have a high aspect ratio and cannot be much wider than 0.03 mm. Using the estimated depth to which water is mobilized, the modeled crack size, and the measured volumes of water expelled, it is concluded that even at distances of 50 km from the earthquake epicenters, cracks must be separated by no more than 10 or 20 m. In regions of highest discharge nearer the earthquake epicenters, separations of 1 or 2 m are required. These results suggest that water-filled cracks are ubiquitous throughout the brittle continental crust and that these cracks open and close throughout the earthquake cycle. The existence of tectonically induced fluid flows on the scale that we demonstrate has major implications for our understanding of the mechanical and chemical behavior of crustal rocks.
منابع مشابه
Effects of land cover changes induced by large physical disturbances on hydrological responses in Central Taiwan.
This study analyzes the significant impacts of typhoons and earthquakes on land cover change and hydrological response. The occurrence of landslides following typhoons and earthquakes is a major indicator of natural disturbance. The hydrological response of the Chenyulan watershed to land use change was assessed from 1996 to 2005. Land use changes revealed by seven remote images corresponded to...
متن کاملA framework to assess the realism of model structures using hydrological signatures
The use of flexible hydrological model structures for hypothesis testing requires an objective and diagnostic method to identify whether a rainfall-runoff model structure is suitable for a certain catchment. To determine if a model structure is realistic, i.e. if it captures the relevant runoff processes, both performance and consistency are important. We define performance as the ability of a ...
متن کاملSearch for Direct Stress Correlation Signatures of the Critical Earthquake Model
We propose a new test of the critical earthquake model based on the hypothesis that precursory earthquakes are “actors” that create fluctuations in the stress field which exhibit an increasing correlation length as the critical large event becomes imminent. Our approach constitutes an attempt to build a more physically-based cumulative function in the spirit of but improving on the cumulative B...
متن کاملIntegrated Application of Remote Sensing, GIS and Hydrological Modeling to Estimate the Potential Impact Area of Earthquake-Induced Dammed Lakes
Dammed lakes are an important secondary hazard caused by earthquakes. They can induce further damage to nearby humans. Current hydrology calculation research on dammed lakes usually lacks spatial expressive ability and cannot accurately conduct impact assessment without the support of remote sensing, which obtains important characteristic information of dammed lakes. The current study aims to a...
متن کاملEarthquakes trigger the loss of groundwater biodiversity
Earthquakes are among the most destructive natural events. The 6 April 2009, 6.3-Mw earthquake in L'Aquila (Italy) markedly altered the karstic Gran Sasso Aquifer (GSA) hydrogeology and geochemistry. The GSA groundwater invertebrate community is mainly comprised of small-bodied, colourless, blind microcrustaceans. We compared abiotic and biotic data from two pre-earthquake and one post-earthqua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007